Survey of dusty AGNs based on the mid-infrared all-sky survey catalog

Shinki Oyabu
(Nagoya University)

&

MSAGN team

1. Introduction
2. MSAGN
3. Results
 1. AKARI results
 2. Other activity
4. Dusty AGNs
5. Summary
Introduction: Motivations

- Heavily obscured AGNs in the local Universe
- Many AGNs are obscured
- Local dusty AGNs are needed to explain Hard X-ray background

The nature of this population, even in the local universe, is only poorly understood, because of the strong selection bias against finding them at optical wavelengths.

Imanishi et al. 2008

Treister et al. 2009
Mid-infrared search for AGNs

- Using MIR bands,
 - we can detect thermal emission from dusty torus of AGNs
 - whether they are buried or not.

- IRAS 12micron follow-up (Rush et al. 1993)
 - IRAS ~ 300 mJy at 12μm

- ISOCAM parallel mode survey (Haas et al. 2003, Leipski et al. 2005)
 - was deeper than AKARI all-sky survey, but a survey area was only 10 square degrees.

- Spitzer made AGN search using deep surveys (e.g. Lacy et al. 2004; Alonso-Herrero et al. 2006; Polettea et al. 2006)
AKARI MIR All-Sky Survey catalog

※ Zodiacal light was removed with a simple way in this map.
The star atlas was made by Nagoya City Museum using Stellar Navigator (Astro. Arts Co.).

Table 1 Performance summary

<table>
<thead>
<tr>
<th>Channel</th>
<th>S9W</th>
<th>L18W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wave coverage</td>
<td>6—12um</td>
<td>14—26um</td>
</tr>
<tr>
<td>Detection limit (5σ)</td>
<td>50 mJy</td>
<td>90 mJy</td>
</tr>
<tr>
<td>Saturation (80% linearity)</td>
<td>< 300 Jy</td>
<td></td>
</tr>
<tr>
<td>Spatial resolution</td>
<td>$< 9.4''$</td>
<td></td>
</tr>
</tbody>
</table>

Ishihara et al. 2010
Target Selection

- AKARI mid-infrared all-sky survey catalog
 - $|b| < 30$, LMC, and SMC regions are excluded.
 - Identified with 2MASS

- Criteria of MIR excess
 $$\frac{F(9\mu m \text{ or } 18\mu m)}{F(Ks)} > 2$$

- ~1500 candidates
 - Famous objects are also included.

Observed sources
There is a problem.....

- We suffer from the contamination of PAH strong galaxies like M82.
Mission Program: MSAGN (Mid-infrared Search for AGNs)

- PI: S. Oyabu
- in AKARI Phase3 (Post Helium mission)
- IRC near-infrared spectroscopy of the mid-infrared sources

- To distinguish AGNs and others using the near-infrared spectra, and

- to detect PAH emission features at 3.3μm to reveal star-formation activity not only in star-forming galaxies but also in AGNs.
Result

- In MSAGN, 92 spectra are taken.
 - 44 AGNs (8 AGNs have PAH emission in 3.3 μm)
 - 36 star-forming galaxy
 - 12 red stars

- We also performed optical spectroscopy from the ground.
 - Lick 3m, KPNO 2m, SAAO 2m
The 9μm fluxes of our sample are below 300 mJy. Most of them are located at z<0.2. The redshift distribution of AGNs slightly shifts to higher redshift.
PAH emission features at 3.3μm in star-forming galaxies

(Yamada et al. #2-18)
Combination with other wavelength

- Subaru follow-up observation of an AKARI quasar
 - (Aoki, Oyabu et al. 2011)

- SDSS+α vs. AKARI MIR All Sky Sources
 - Toba et al. (Tomorrow)

- SWIFT/BAT vs. AKARI All Sky Sources
 - Ichikawa et al. (Today)
 - Matsuta et al. (Poster #1-10)

- XMM-Newton vs. AKARI All Sky Sources
 - Hirata et al. (They are not here.)
Discussion:

Hot dust in a star-forming galaxy

- LEDA 84274

Optical spectrum indicates it is a star-forming galaxy.

Steep continuum suggest AGN.

Z = 0.0377

(Oyabu et al. 2011)
In order to explain the NIR spectra, 600K blackbody is necessary.

(Oyabu et al. 2011)
The other example

- IRAS 01250+2832

Detail observations of CO absorptions are reported by Shirahata et al. #2-12.
SED of IRAS 01250+2832

For this galaxy, 500K black body is necessary.

Subaru near-infrared imaging with AO
The situation that OB stars produce more than 10^{11} Lsun in 1 cubic parsec are difficult, because crossing and relaxation times are short (10000yr and 1Myr, respectively). If the situation is 1000 ~ 10000 massive and obscured star forming regions with 500k dust, we can explain our 500k dust detection. This is reliable?????
We have performed X-ray observations with Suzaku at 0.4-10 keV.

Suzaku did not detect both of them.

- Expectations: $5 \times 10^{-12} - 2 \times 10^{-13}$ erg s$^{-1}$ cm$^{-2}$ with $N_H < 10^{24}$ cm$^{-2}$.
- Suzaku limits: 1×10^{-13} erg s$^{-1}$ cm$^{-2}$

Gandhi et al. 2009
The host galaxies

- **LEDA 84274**
 - $D_n(4000)=1.1$
 - Galaxy mass: 6×10^9 M$_\odot$

- **IRAS 01250+2832**
 - $D_n(4000)=1.6$
 - Galaxy mass: 4×10^9 M$_\odot$

- The AGNs from our mid-infrared search harbor in less massive galaxies than optically-selected AGNs do.
- If dusty AGNs are in the growing stage, the relation between a dusty and a less massive host galaxy might be important.

Kauffmann et al. 03
One more Dusty AGN

• MSAGN 1920074

6dF Spectrum
z=0.019

2.5 um 5.0 um

vLv(L_sun)

Ha

450K dust
AGNs and the host galaxies

- **LEDA 84274**
 - D$_n$(4000) = 1.1
 - Galaxy mass: 6x109 M$_{\odot}$

- **IRAS 01250+2832**
 - D$_n$(4000) = 1.6
 - Galaxy mass: 4x109 M$_{\odot}$

- **MSAGN 1920074**
 - Galaxy mass: 3x1010 M$_{\odot}$

We can still say they are in less massive population, but
Summary

- We are performing dusty AGN search with AKARI MIR All-Sky Survey and AKARI NIR spectroscopy.
- We took 92 near-infrared spectra with AKARI IRC in Phase 3.
- We detected hot dust in 3 galaxies which do not show any evidence of AGNs in other wavelengths.
 - The suitable explanation is the existence of AGNs.
- These dusty AGNs might live in less massive galaxies than optically selected AGNs do.
 - We only have 3 samples. We need to investigate more.