

Rest-frame Optical Spectra of Quasars at z > 4: Detection of H α Emission Lines and Implications on Distant Quasar Properties

Myungshin Im CEOU/Department of Physics & Astronomy, Seoul National University

Hyungsun Jun (SNU/JPL), Dohyeong Kim, Hyung Mok Lee, Myung Gyoon Lee, Jonghak Woo (SNU), Y. Ohyama (ASIAA), Minjin Kim (KASI), T. Nakagawa, H. Matsuhara, S. Oyabu, T. Takagi, T. Wada (ISAS/JAXA), X. Fan (Steward Observatory) et al.

2016 Sept. 22 - 24 East-Asia AGN Workshop, Seoul, Korea

SMBHs over Cosmic History

Center for the Exploration of the Origin of the Universe

 $\mathbf{O} \sim 10^9 \text{ M}_{\odot}$ BHs at z ~ 7.0 (t_{univ} < 1 Gyr, Mortlock et al. 2011)

- Universe age: ~1 Gyr or less
- BHs must be very young

Center for the Exploration of the Origin of the Universe

Questions@z > 4

OMass – Reliable?

• Scaling relation – Universal?

• Spin – Fast or slow?

M_{BH} for High Redshift AGN

Need for Better Mass Measurement

Center for the Exploration of the Origin of the Universe

✓ Use of CIV, MgII reliable? large scatter, metallicity evolution, extinction....

 \checkmark Better if we can use optical spectral lines such as H α or H β

Seoul National University

Fast Spinning BH at z > 4?

• $T_{eff,max} = f_{max}(a) \left(\frac{\dot{M}}{M^2}\right)$ (Loar & Davis 2011)

High M_{BH}, low spin → Cold accretion disk L(ion) ~ L(5100) or not?
→ Deviation in L(ion) vs L(5100) relation (Wang et al. 2014; Laor & Davis 2011; Trakhtenbrot 2014)

QSONG

- Quasar Spectroscopic Observation with NIR Grism [Open Time Program (PI: M Im) + Mission Program (PI: HM Lee)]
- NIR Spectroscopic Study of high-z and low-z AGNs at 2.5 5.0 μm with NIR grism of AKARI (R ~ 120, FWHM ~ 2500 km/sec)
- High-z study: 155 QSOs at 3.4 < z < 6.42 (Jun, Im et al. 2015)
- Low-z study: 83 nearby AGNs + red AGNs (Kim, Im, et al. 2015)

High-z QSONG (H. Jun, M. Im, et al. 2015, ApJ)

- 155 Type-1 QSOs at 3.4 < z < 6.42 (mostly SDSS QSOs)
- z-band magnitude limit: $z_{AB} < \sim 19$ for z < 5.5 $z_{AB} < \sim 20$ for z > 5.5
- L_{bol} limit ~ 10⁴⁷ erg s⁻¹
- M_{BH} limit ~ 10⁹ M_{\odot}

NIR Prism Observation

NP

NG

Center for the Exploration of the Origin of the

Universe

FWHM(CIV) = 11,000 km/sec vs. ?

 $Log[M_{BH}(CIV)] = 10.48 + 0.24$ vs.?

QSO@z=3.88

Center for the Exploration of the Origin of the

Universe

FWHM(CIV) = 3,100 km/sec vs. ?

 $Log[M_{BH}(CIV)] = 9.52 + 0.20$ vs. ?

2014 July 9 - 11

East-Asia AGN Workshop, Seoul, Korea

Ha Detection in 72 quasars (S/N > 2)

SDSS J 114816+525150 at z=6.42

Center for the Exploration of the Origin of the Universe

11.

Center for the Exploration of the Origin of the Universe

Composite Spectrum

Jun, Im, et al. 2015, ApJ

Center for the Exploration of the Origin of the Universe

Spectral Fitting

• Line luminosities, line widths are derived for 72 Quasars

Jun, Im, et al. 2015, ApJ

L(Hα) VS L(5100) RELATION - NO DEVIATION FROM LOW Z RELATION - RAPIDLY SPINNING BH

Astronomy Seoul National University

Center for the Exploration of the

Origin of the Universe

- Some Quasars: $M_{BH}(H\alpha, H\beta) > M_{BH}(CIV)$

BR 0006-6208 (z=4.49)

Center for the Exploration of the Origin of the Universe

FWHM(CIV) = 11,000 km/sec vs. FWHM(H α)= 2,900 km/sec Log[M_{BH}(CIV)] = 10.48 +- 0.24 vs. Log[M_{BH}(H α)]=9.46 +-0.31

Center for the Exploration of the Origin of the Universe

Astronomy Seoul National University

QSO@z=3.88

FWHM(CIV) = 3,100 km/sec vs. FWHM(H α)= 6,600 km/sec Log[M_{BH}(CIV)] = 9.52 +- 0.20 vs. Log[M_{BH}(H α)]=10.44 +-0.21

Center for the Exploration of the Origin of the Universe

$10^{10} M_{\odot}$ SMBH exist at z < 5

Jun, Im, et al. 2015, ApJ

Summary

Center for the Exploration of the Origin of the Universe

• AKARI NIR (2.5-5 micron) Spectroscopy of 72/155 high redshit QSOs (3.4 < z < 6.4)

• Rest-frame optical spectra for high redshift QSOs First detection of H α lines at QSOs z > 4.5 (before JWST)

OExistence of ~10⁹ M_{\odot} SMBHs out to z ~ 6, confirmed

OL(Hα) – L(5100) valid out at 0 < z < 6 and 10⁴² < L(5100)/[erg/sec] < 10⁴⁷

OFast spin of SMBHs formed in the first Gyr