Discovery of a Faint Quasar at z~6 and Implications for Cosmic Reionization

Yongjung Kim¹,², Myungshin Im¹,², Yiseul Jeon¹,², Minjin Kim³,⁴, and IMS Team¹

¹Center for the Exploration of the Origin of the Universe(CEOU)
²Astronomy Program, Dept. of Physics and Astronomy, Seoul National University (SNU)
³Korea Astronomy and Space Science Institute (KASI)
⁴University of Science and Technology (UST)
Introduction

- **Quasars in the Early Universe**
 - Energetic sources in the universe
 - A unique sample to study
 - Formation of the first supermassive black holes (SMBHs)
 - Host galaxies at the epoch of cosmic reionization

- **Optical/NIR Survey for High-z Quasars**
 - SDSS (Fan+06; Jiang+08,09), CFHQS (Willott+07,09,10),
 UKIDSS (Mortlock+09,11), VIKING (Venemans+13,15),
 Pan-STARRS1 (Banados+14)

ULAS J1120+0641, z=7.085 quasar (Mortlock+11)
Introduction

- Cosmic Implication of Discovered Quasars
 - Formation of $10^{8-10} \, M_{\odot}$ SMBHs just ~ 1 Gyr after Big Bang
 - Accreting mass at maximal rates (Willott+10; Jun+15)
 - Paucity of hot dust emission (Jiang+10; Jun & Im 13)
 - Significant fraction of intergalactic medium (IGM) is reionized
 - Strong Gunn-Peterson troughs (Gunn & Peterson 65; Fan+06)
Introduction

- Lack of Faint Quasars at $z > 6$ ($M_{1450} > -24$ mag)
 - Biased sample of currently discovered quasars
 - High luminosities and high accretion rates

Venemans+15
Introduction

- Lack of Faint Quasars at $z > 6$ ($M_{1450} > -24$ mag)
 - The faint end of the quasar luminosity function (QLF)
 - Significant contribution to reionization (Giallongo+15) or not (Willott+10)

UV Emissivity

$$\epsilon \propto \phi \times L$$

ϕ: QLF L: luminosity

Maximum at $M_{1450} \sim -23.5$ mag
IMS and CFHTLS Data

• **Infrared Medium-deep Survey (IMS)**
 - Infrared imaging (Y/J) survey for seven extragalactic fields (~120 deg2) with UKIRT/WFCAM (Im et al. in prep)
 - Detection limit (5σ) : ~23.5 AB mag (Karouzos+14)

• **Canada-France-Hawaii Telescope Legacy Survey (CFHTLS)**
 - Optical imaging (ugriz) survey with CFHT/MegaCam
 - Completeness limit (80%) : ~24-25 AB mag (Hudelot+12)

• **Data Analysis**
 - Focus on **SA22** field (~12.5 deg2)
 - Source detection in z’-band images by SExtractor
 - Dual mode with the identified z’-band sources

SA22 Field Coverage
Quasar Candidate Selection

• Spectral Energy Distribution of z~6 Quasars
 • Lyα break (1216 Å) redshifted to λ~8500 Å
 • Blue continuum beyond Lyα break

• Selection Criteria
 • \((i' - z') > 2\)
 • \((i' - z') - 1.5 (z' - J) > 0.6\)
 • No detection (2σ) in \(u', g', \) and \(r'\) (Willott+09)

IMS J2204+0112

\[
\begin{align*}
F_v (\mu Jy) & \\
\text{Wavelength(Å)} & \\
0.1 & 1 & 10 & 100 \\
2000 & 4000 & 6000 & 8000 & 12000 & 14000 & 16000
\end{align*}
\]
Spectroscopic Observation

• Gemini/GMOS-S Observation (2015A)
 • Supported by K-GMT Science Program of KASI
 • Instrument: Gemini Multi-Object Spectrograph (GMOS)

• Technical Description
 • Nod & Shuffle longslit (1” width) mode with R150_G5326 grating
 • 4x4 binning \rightarrow 7.72 Å/pixel (\sim290 km/s)
 • RG610_G0331 filter to avoid the order-overlap

• Exposure Time
 • 12 sequences of 968 s (\sim3 hr)
 • Use five frames (\sim1.3 hr) with seeing < 1”
Discovery of a Faint Quasar at $z \approx 6$

- **Spectrum of IMS J2204+0112**
 - Clear break at ~ 8443 Å (identified as Lyα)
 - Fit the SDSS composite quasar spectrum, considering IGM attenuation (Vanden Berk+01; Madau+96)
 - $z = 5.944 \pm 0.002$, $M_{1450} = -23.59 \pm 0.10$ mag

- **Emission lines**
 - Lyα $\lambda 1216$, N V $\lambda 1240$, Si IV $\lambda 1400$

- **(Possible) absorption lines**
 - Si II $\lambda 1260$, C II $\lambda 1335$
 - Absorber at $z \approx 5.71$

- **Lower limit of M_{BH}**
 - $M_{BH} > 10^8$ M_{\odot} ($\lambda_{Edd} = 1$)
Expected Number of Quasars in SA22

• Expected Number in SA22 Field at $M_{1450} = -23.5$
 • Hard to constrain the faint end with only one quasar
 • Optical/NIR AGNs (Willott+10, Kashikawa+15) : 1.4
 • Faint X-ray AGN candidates (Giallongo+15) : ~40

• Fraction of Required UV Photons for Reionization
 • AGNs at $M_{1450} \sim -23.5$
 • Giallongo+15: $\sim60\%$
 • Willott+10, Kashikawa+15: $\sim3\%$
 • Our result: $<15\%$

![Graph showing expected number of quasars vs. M_{1450} magnitude](image)
IMS as a Survey for High-z Quasars

- **Survey for Faint Quasars in the Early Universe**
 - Can be identified efficiently with IMS
 - Analysis of full IMS data → more faint quasars at $z \sim 6$

- **Large Sample of Faint Quasars**
 - Constrain the faint end of QLF
 - Determine M_{BH} & Eddington ratio
 - Understand low-luminous quasar population
Thank You