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the Sun as a laboratory of plasma astrophysics

From 

Tajima & Shibata (1997)

“Plasma Astrophysics”



Hinode  since 2006

EUV Imaging 
Spectrometer (EIS)

Solar Optical Telescope (SOT)

X-Ray Telescope (XRT)

• FG (filtergram): High-resolution images of the 

photosphere and chromosphere

• SP (Spectropolarimeter): high-precision spectro-

polarimetric diagnostics of the photosphere

high-resolution images of the 

corona

diagnostics of the temperature, 

velocity, and density in the 

transition region and the 

corona
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The solar atmosphere

(figure from Phillips, Feldman, Landi 2008)
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Courtesy T. J. Okamoto,

Hinode SOT, JAXA / NAOJ



Alfvenic waves in the chromosphere

Hinode Observations:

– Okamoto+ (2007), Okamoto+, TY (2015)

Numerical Simulations: 

– Antolin, TY, Van Doorsselaere (2014), Antolin+, TY (2015)

7



8

The solar atmosphere

(figure from Phillips, Feldman, Landi 2008)



Coronal transverse 

waves in a prominence

Okamoto+ 2007



Coronal transverse 

waves in a prominence

Okamoto+ 2007

fine-scale threadlike 

structures 

oscillating in the 

plane of the sky 

with periods of 

several minutes

Alfven waves

(c.f. Ofman & Wang 

2008)



Fine strand-like structures in the oscillating loop

Antolin, TY, Van Doorsselaere, 2014, ApJ

The transverse oscillations can lead to KH instabilities that deform 

the cross-section area of the loops. The vortices generated from 

the instability are velocity sheared regions with enhanced 

emissivity hosting current sheets.



Resonant absorption of transverse oscillation 

and associated heating in a prominence

Okamoto+, TY 2015; Antolin+, TY 2015



Turbulence in the prominence

Hinode

– Berger+ (2008, 2010)

Numerical simulations

– Hillier+ (2012), Kaneko & TY (2016a,b)
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Turbulence in a quiescent prominence
Berger+ 2008; 2010



Turbulence in a quiescent prominence
Berger+ 2008; 2010

filamentary downflows and vortices 

dark, episodic upflows: 170-700 km in width, exhibit turbulent flow 

and rise with constant speeds of 20 km/s from the base to 

heights of 10-20 Mm. resemble buoyant starting plumes



Magnetic Rayleigh-Taylor instability in a prominence

Hillier+ (2012)

Magnetically supported prominence plasma suffers from the RT 

instability. It may evolve into the turbulence state in the 

nonlinear phase. Demonstration by MHD simulations.
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Magnetic RT instability in a prominence

Kaneko & TY (2016a, b in prep.)

3D MHD simulations based on the newly proposed “reconnection 

condensation” model. The simulation includes the optically-thin 

radiative cooling and thermal conduction effects.

The formed prominence shows a turbulent structure probably 

driven by the magnetic Rayleigh-Taylor instability.
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Studies on chromospheric jets

Hinode Observations:

– De Pontieu+ (2007), Pereira+ (2012)

Numerical Simulations: 

– Iijima & TY (2015), Iijima (2016, PhD thesis UTokyo)
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Chromospheric jets

• Spicules in quiet regions and coronal holes

• Dynamic fibrils in active regions

...

Manifestation of dynamic plasma processes

• Plasma flows (super-sonic speed)

• Magnetic fields (from high- to  low-beta regime)

• MHD waves, Shock waves (mode conversion, non-linear procs.)

• Thermal processes: Radiative cooling, shock heating

• Ionization, recombination ...

Clue for understanding 

the transport of energies 

to the corona

Courtesy T. J. Okamoto,

Hinode SOT, JAXA / NAOJ

De Pontieu+ (2007)
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Statistical studies of chromospheric jets

Lengths, velocities, lifetimes are different among different classes of jets.

Spicules (Pereira+ 2012)

AR(hot) dynamic fibrils 

(De Pontieu+ 2007) 

CH(cool) QR
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Chromospheric Alfvenic Waves

De Pontieu+ 2007

Alfven waves with amplitudes in the order of 10 to 25 km/s and periods of 

100 to 500 sec. energetic enough to accelerate the solar wind and 

possibly to heat the quiet corona (c.f. Okamoto & De Pontieu 2011)



Chromospheric jets: model

The dense cool chromospheric plasma is lifted by unknown 

mechanism(s) into the relatively tenuous corona. It is guided by 

a vertical magnetic field and is observed as an elongated jet.
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(figure from Suematsu 2008)

(figure from Iijima 2016, PhD UTokyo)



The rebound shock model for jet driving
Hollweg (1982)

(also Hollweg+ 1982; Sterling & Hollweg 

1988; Suematsu+ 1982, Kudoh & Shibata 

1999, Takasao+ 2013, etc.)

The transition region (contact discontinuity) is 

lifted up by interactions with the rebound 

shock trains propagating in the chromosphere.

The shock trains 

can be generated by 

various processes: 

from convective 

overshoot, Alfven 

waves, reconnection 

events etc.
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Chromospheric jets: model

The dense cool chromospheric plasma is lifted by unknown 

mechanism(s) into the relatively tenuous corona. It is guided by 

a vertical magnetic field and is observed as an elongated jet.
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(figure from Suematsu 2008)

(figure from Iijima 2016, PhD UTokyo)



Typical case: Tc = 0.4 MK, B0 = 30 G

𝜌
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Radiative MHD simulations of chromospheric jets
Iijima & TY (2015); Iijima (2016, PhD UTokyo)



𝑇 & 𝐵
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Typical case: Tc = 0.4 MK, B0 = 30 G

Radiative MHD simulations of chromospheric jets
Iijima & TY (2015); Iijima (2016, PhD UTokyo)



𝛻 ∙ 𝑉

27

Typical case: Tc = 0.4 MK, B0 = 30 G

Radiative MHD simulations of chromospheric jets
Iijima & TY (2015); Iijima (2016, PhD UTokyo)



Rebound-shock ejection of jets

Jet "front": 

contact discontinuity between 

chromospheric and coronal plasmas

shock in corona

shock in chromosphere

1D distribution along a field line passing through the top of a jet
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Iijima & TY (2015); Iijima (2016, PhD UTokyo)



Results

Synthesized brightness

Preliminary
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Iijima & TY (2016); 

Iijima (2016, PhD UTokyo)



Preliminary

magnetic field lines & T color stream lines & |V| color
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Iijima & TY (2016); Iijima (2016, PhD UTokyo)



Hinode results on chromospheric dynamics

Waves

Transverse waves found in prominences (Okamoto+ 2007), spicules 

(De Pontieu+ 2007), evidence of the resonant-absorption 

thermalization (Okamoto+ 2007)

Prominence internal flows

Turbulent flows inside (Berger+ 2008; 2010)

Chromospheric jets (Spicules)

Extensive statistical studies are carried out.

 By combination with radiative MHD simulations, understanding of 

the driving mechanisms are going to be achieved.

Chromospheric reconnection

Anemone jets (Shibata+ 2007), penumbral micro-jets (Katsukawa+ 

2007)

 Ubiquitous magnetic reconnection



End
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Basic equations

Magnetohydrodynamic equations

EoS for LTE plasma (tabulated)
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Iijima & TY (2015); Iijima (2016, PhD 

UTokyo)



Radiative cooling

Total cooling term is switched according to the vertical column density

radiative loss function: 

CHIANTI database

with extension by Goodman & 

Judge (2012) for low temperature 

plasma
Intensity 𝐼 (w/ gray approx.) is 

obtained by solving radiative 

transfer eq.
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Iijima & TY (2015); Iijima (2016, PhD UTokyo)



Chromospheric Anemone Jets
(Shibata et al. 2007; 

Nishizuka et al.  2011)

Found in active regions

Cusp-shaped structure and bright footpoint

length 1-4 Mm, lifetime 100-500s

velocity 5-20km/s ~local Alfven speed



Coronal X-ray Jets found in early 1990's

Shibata et al. 1992

TY & Shibata (1995, 1996)



Waves as a carrier of energy

magnetic 

reconnection
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The solar atmosphere
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Wave as a carrier of the energy

温 度


