Radio activity of BL Lacertae during gamma-ray outbursts

Daewon Kim (SNU)

S. Trippe, S. Lee, J. Park, J. Oh, T. Lee, , G. Zhao, S. Kang, M. Kino, J. Kim, K. Wajima, and J. Algaba

The 10th East Asian Meeting on Astronomy September 26 - 30, 2016 | Seoul, Korea

Outline

- Background
- Observation
- Results
- Summary

Blazar?

The most extreme class of AGN
 → nonthermal polarized emission, rapid variability, superluminal motion, etc.

 \cdot Very small viewing angle between the jet axis and the line of sight

Morphology of Blazar Jet

- VLBI revealed mm-wave structure of the jet (decomposition with high angular resolution, ~mas)
- Core at upstream of the jet (stationary feature in VLBI map, optical depth ~ 1)
- Knot at downstream of the jet (moving feature in VLBI map, mostly optically thin, arises in the core)
- \cdot Powerful tool for understanding how the jet works

Main Questions

⟨Marscher et al. 2011⟩

- Complex variability at multi-wavebands (rapid variations, correlated light curves, etc.)
- \cdot A lack of the physical processes in detail
- Observed properties should be studied (monitoring large samples & individual sources)
- Connection between radio and y-ray (leading flare, new plasma ejection, etc.)

Beckmann 2012>

Data: IMOGABA & PAGaN

Korean VLBI Network (Lee et al. 2014)

1. IMOGABA

- Interferometric Monitoring of Gamma-ray Bright AGNs
- · Korean VLBI Network (KVN)
- · Observing frequency: 22/43/86/129 GHz
- · Multi frequency simultaneous observation
- \cdot Single polarization
- \cdot Snapshot mode with ~33 AGNs

2. PAGaN

- Plasma-physics of Active Galactic Nuclei
- \cdot KVN & KAVA (KVN + VERA)
- · Observing frequency: 22/43/86/129 GHz
- \cdot Dual polarization
- Full-track mode with a few AGNs

Target Source: BL Lacertae (BL Lac)

- · Prototype of the BL Lac objects which is a subclass of blazar.
- · Monitored by both IMOGABA and PAGaN.
- \cdot One of the bright (> 1Jy) AGNs showing the recent y-ray outbursts

Data	Ducientà	Engeneration	r c
Date	Project	Frequency (CII-)	tobs
		(Gfiz)	(mm.)
2013 Jan 16	iMOGABA2	22/43/86	25
2013 Feb 27	iMOGABA3	22/43/86/129	25
2013 Mar 28	iMOGABA4	22/43/86/129	20
2013 Apr 11	iMOGABA5	22/43/86/129	30
2013 May 08	iMOGABA6	22/43/86	25
2013 Sep 24	iMOGABA7	22/43	25
2013 Oct 15	iMOGABA8	22/43/86	20
2013 Nov 20	iMOGABA9	22/43/86/129	30
2013 Dec 24	iMOGABA10	22/43/86/129	35
2014 Jan 02	PAGaN	22/43	240
2014 Jan 27	iMOGABA11	22/43	35
$2014 {\rm Feb} 28$	iMOGABA12	22/43/86/129	55
$2014 {\rm \ Mar} {\rm \ } 05$	PAGaN	86	109
2014 Mar 22	iMOGABA13	22/43/86/129	35
2014 Apr 22	iMOGABA14	22/43/86/129	35
2014 Jun 13	iMOGABA15	22/43	45
2014 Sep 01	iMOGABA16	22/43/86	30
2014 Sep 27	iMOGABA17	22/86	30
2014 Oct 29	iMOGABA18	22/43/86	30
2014 Nov 28	iMOGABA19	22/43/86	25
2014 Dec 26	iMOGABA20	22/43/86	40
2015 Jan 15	iMOGABA21	22/43/86	35
$2015 {\rm Feb} 24$	iMOGABA22	22/43/86	35
2015 Mar 26	iMOGABA23	22/43/86/129	35
2015 Apr 30	iMOGABA24	22/43/86/129	35
2015 May 27	PAGaN	43/129	251
2015 Aug 28	iMOGABA25 ^d	"	"
2015 Sep 24	iMOGABA26	22/43/86/129	30
2015 Oct 23	iMOGABA27	22/43/86	35
2015 Nov 01	PAGaN	22/86	250
2015 Nov 04	PAGaN	43	250
2015 Nov 30	iMOGABA28	22/43/86/129	35
2015 Dec 28	iMOGABA29	22/43/86/129	35
2016 Jan 13	iMOGABA30	22/43/86/129	40
$2016 \ {\rm Feb} \ 11$	iMOGABA31	22/43/86/129	30
2016 Mar 01	iMOGABA32	22/43/86/129	30

Observation Summary

- Time range: Jan.2013 ~ Mar 2016
- Total 35 observations
- · 30 from IMOGABA
- \cdot 5 from PAGaN
- \cdot 3 time gaps due to a system maintenance
- · Some exception in observing frequency \rightarrow failure at imaging
- Total on-source time
 ~0.5 h (IMOGABA) in average
 ~4.0 h (PAGaN) in average

Morphology of BL Lac in the KVN maps

- Total intensity maps (22/43/86/129 GHz) of BL Lac obtained from the KVN.
- \cdot Core (center), one knot (downstream) from a circular Gaussian fit.
- \cdot No significant changes in radio structure with a quasi-stationary knot

Variability

- \cdot Multi waveband light curves of BL Lac
- \cdot mm wavelengths from the KVN
- \cdot γ -ray from the Fermi-LAT
- Starting with the apex of a huge radio outburst (~9 Jy)
- \cdot Two y-ray outbursts flared
- Remarkable counterparts are not found (leading feature)
- \cdot Possibly longer time lag in this source

Flux Evolution

- \cdot An exponential fit to the core flux
- Common characteristic of flux outbursts in blazars.
- Decay time scales of ~ 13.69±2.83 (22 GHz) months 11.72±2.64 (43 GHz) months 10.33±1.89 (86 GHz) months 9.42±1.83 (129 GHz) months
- Longer energetic lifetimes of lower energy electrons (Marscher et al. 2008)
- \cdot Stratification of flux level in later
- \cdot Large amplitude losses at 129 GHz

Spectral Evolution

- \cdot Mostly optically thick ($\alpha \approx 0$) emission
- An increase in opacity right before the second y-ray outburst → possibly new ejection (Jorstad et al. 2013)

- · Power-law distribution of particle energy
- Flat spectra corresponding major flares \rightarrow Energetic shock acceleration

Extended Region

- \cdot Properties of the knot over time
- · Quasi-stationary feature
- · Blending effect of multijet components \rightarrow difficult at detailed kinematics
- Farther downstream in the jet at lower fre quencies (Marscher et al. 2014)
 3.2 mas (22 GHz)
 1.9 mas (43 GHz)
 0.9 mas (86 GHz)
 0.5 mas (129 GHz) roughly
- Bending trajectory in southwest \rightarrow characteristic trajectory of BL Lac
- Both distance & angle before the second γ -ray event (MJD~57050) \rightarrow New ejection?

Summary

- Complex behavior in multi-waveband light curves of blazars is known to be correlated with different wavelengths, should be studied by monitoring at various wavelengths.
- We present long-term radio activity of BL Lacertae at 22/43/86/129 GHz during &-ray outbursts using a simultaneous multi-frequency observation of the KVN.
- \cdot In the mm wavelength light curves, we do not find any significant radio counterparts to the y-ray outbursts.
- The huge radio outburst follows an exponential decay which is a common characteristic of blazar outbursts with the decay time scales of 9 ~ 13 months.
- Spectral evolution of the core of BL Lac shows the well-known properties of blazar jet Such as optically thick feature, power-law distribution of particle energy.
- Position angle of the knot indicates a bending the jet which is one of the known features of BL Lac. The results of distance, position angle and spectral index could be implying ejection of a new jet component from the core.