Late-type Stars with Perspective of Radio Observations

Youngjoo Yun 2018 Radio Winter School @University of Ulsan

Outline

- Introduction to late-type stars with an example
- Brief description of stellar evolution
- Evolution of late-type stars (AGB to PN)
 - Physical characteristics of circumstellar envelopes of late-type stars
- Results of radio observations toward late-type stars
 - Masers around late-type stars
 - Multi-frequency observations
 - Polarization of late-type stars

Semi-major axis ~ 60 AU Orbital period ~ 350 yr System mass ~ 2 M_sun (1.3 and 0.7)

Mass-loss rate At TP ~ $7x10^{-6} - 2.5x10^{-5}$ M_sun At pre-TP ~ 10^{-6} M_sun Shell expansion velocity ~ 14.3 km/sec

Shapes of CSE around binary AGB stars

- ~ physical parameters of binary system (separation, mass ratio)
- ~ density, temperature, chemistry
- ~ viewing angle
- > temporal variation of the mass-loss rate
- > expansion velocity
- > supply new elements to the ISM \rightarrow termination of AGB phase \rightarrow stellar evolution models

Basic stellar physics

Basic stellar physics

Hans Bethe 1939

Stellar evolution

AGB to planetary nebula

Asymptotic Giant Branch

Intermediate evolutionary phase = Pre-Planetary Nebula (PPN) phase

- Dramatic change of morphology and outflow velocity (~100 km/s)
- Likely initiated during late-AGB phase

AGB phase

- Central degenerate core (C+O)
- He and H-shells (nuclear-burning)
- Very large H-rich stellar envelope
- Cool (Teff < 3000 K)
- Very luminous (~10⁴ L_sun)
- Dusty, spherical expanding

envelopes at low speeds(5- 20 km/s)

- Large mass-loss rate (~ 10⁻⁴ M_sun/yr)

Post-AGB and Planetary Nabula (PN) phase

- Mass-loss rate decreases
- Stars become hot → ionize CSE material
- Stellar envelope shrinks \rightarrow Teff increases up to 30000 K \rightarrow ionize detached circumstellar nebula
- End of stellar evolution for stars with mass of 0.8 8 M_sun

Expelled circumstellar matter (CSM) interacts with the ISM, a bow shock can develop at the interface between the circumstellar envelope (CSE) and the ambient medium.

HERSCHEL/PACS images of the ISM/CSM interaction seen around many mass-losing AGB and red supergiant stars (N. Cox 2012)

AGB to planetary nebula

Asymptotic Giant Branch

AGB to planetary nebula

Asymptotic Giant Branch

Light curves of AGB

Credit: ESO Structure of the pulsating red giant S Ori (artist's impression)

Schematic view of an AGB star

Mass-loss phenomena are crucial to study the AGB evolution. How can we see the mass-loss during the period ABG to PN?

- MASER is an unique tool to study the physical environments of AGB stars
- So many AGBs show maser emission (statistical analysis can be done)
- Different characteristics of maser (distribution, variability, intensity) for each source
- Different masing regions according to the different molecules and transitions in the same source → enable us to trace the physical characteristics of CSEs along the distance from the central star
- The highest spatial resolution → enable us to get the dynamical information of the very local area → initiate-region of pulsation and outflow motion

Credit: J. Hron

Different species of maser can occur at the same source. → probe different regions

SiO maser v=1, J=1-0 (43 GHz) $T_k \sim 1500 \text{ K}$ n (H₂) ~ 10⁹ – 10¹¹ cm⁻³

Water maser (22 GHz) $T_k \sim 400 - 1000 \text{ K}$ $n (H_2) \sim 10^8 - 10^{10} \text{ cm}^{-3}$

OH maser (1665/7 MHz) $T_k \sim 100 \text{ K}$ $n (H_2) \sim 10^5 \text{ cm}^{-3}$

Astrophysical masers

Microwave Amplification by Stimulated Emission of Radiation

Statistical analysis with masers

to study the evolutionary characteristics of late-type stars

Water maser

as a tracer for the outflow motion of late-type stars

Found in AGB, post-AGB, PN

- Hyperfine transition (rotational): $6_{16} \rightarrow 5_{23}$
- Pumped mainly by shocks or by IR radiation
- Physical condition:
 - $T_k \sim 400 1000 \text{ K}$
 - $n(H_2) \sim 10^8 10^{10} \text{ cm}^{-3}$
- Giving information for the position, velocity, proper motions

Water fountains

- Evolved stars with water masers (~ 100 km/s components) → jet tracer
- Late AGB, post-AGB, PN
- Bipolar outflow → axisymmetric jets
- Key objects to study the emission of jets that determine the shape of PNe

Water maser

as a tracer for the outflow motion of late-type stars

Water maser

as a tracer for the outflow motion of late-type stars

SiO maser

as a tracer for the physical environments of inner regions of CSEs

- Shock permeates the masing region → Increasing the collisional rate in the passage of the shock → increasing the
- → increasing the intensity of the maser spots
- → evidence of collisional pumping

Gonidakis 2013

Shock affects **only the kinematics of the ring**, just pushing the masing material to the outer region

→ cannot conclude the SiO masers are purely collisional pumped

Questions

- How do AGB, RSG, and RG loose their mass?
- When and where do inhomogeneities and asymmetries form?
- Which are the shaping mechanisms ?
- What is the role of binarity in AGB stars?

Related issues

- Relationships between the photosphere, molecular layer, dust shell, and SiO maser shell
- Pulsation-driven extended atmospheres, dust formation, and radiative acceleration on dust grains dragging along the gas

Strong needs for multi-epoch, multi-frequency (near-IR, mid-IR, sub mm, mm) observations with high resolution

- To observe different distances from the stellar photosphere
- To explore the extended stellar atmospheres
- To establish links between the spatial scales of molecular envelopes and of the dust shell
- To understand the process of dust formation and of mass loss
- Recent researches focus on the role of Al₂O₃ dust which can form at a relatively high temperature (~1700 K).
- Radial structure and kinematics of the stellar atmosphere and the CSE lead us to better understand the mass-loss process and its connection to stellar pulsation.

SiO maser

as a tracer for the physical environments of inner regions of CSEs VLTI/MIDI and VLBA/SiO maser observations of S Ori

- (red) v=2, J=1-0, 42.8 GHz (green) v=1, J=1-0, 43.1 GHz SiO maser images on MIDI model with photosphere, molecular layer, Al₂O₃ dust
- Al₂O₃ dust has an inner radius of ~2 stellar radii, and may be co-located with the SiO maser region.
- The location of the SiO maser emission is consistent with earlier observations and with theoretical models by Gray et al. 2009
- The maser velocity structure indicates a radial gas expansion with velocity ~10 km/sec

SiO maser

as a tracer for the physical environments of inner regions of CSEs

VLTI/MIDI and VLBA/SiO maser observations of S Ori

Radial structure of the CSE of S Ori, Al_2O_3 dust shell (dashed arcs), 42.8GHz and 43.1GHz maser spots (circles/triangles)

Role of polarization in mass-loss processes of late-type stars

- A study of mass-loss of late-type stars needs a lot of information about the physical processes of CSEs.
- Radiation pressure on dust grains → acceleration of the stellar wind → mass-loss of evolved stars
 - strongly related to the kinematics and morphology of pulsation-driven extended atmospheres
- Polarization observations of circumstellar dust and molecular lines give information about dust properties and magnetic fields in CSEs of evolved stars.
- Polarimetric continuum obs. → orientation of elongated dust grains due to a global magnetic field
- Polarized maser emission → strength and geometry of the magnetic field in the expanding envelopes
- Polarization affects a morphology of CSEs and outflow motions that are closely related to the mass-loss during the period from AGB to PN.

What is polarization?

Light is oscillating E and B fields.

Polarization is how the wave oscillates.

Basic of polarization: Stokes parameters

Light wave that propagates in the z direction:

$$\vec{E}_{x}(z,t) = E_{0x} \cos(kz - \omega t) \vec{x}$$
$$\vec{E}_{y}(z,t) = E_{0y} \cos(kz - \omega t + \varepsilon) \vec{y}$$

$$S_0 = I = E_{0x}^2 + E_{0y}^2$$
$$S_1 = Q = E_{0x}^2 - E_{0y}^2$$
$$S_2 = U = 2E_{0x}E_{0y}\cos\varepsilon$$
$$S_3 = V = 2E_{0x}E_{0y}\sin\varepsilon$$

- Linear polarization
- Circular polarization
- Fully polarized light
- Partially polarized light
- Unpolarized light

- $Q\neq 0, U\neq 0, V=0$
- $\mathbf{Q}=\mathbf{0},\mathbf{U}=\mathbf{0},\mathbf{V}\neq\mathbf{0}$
- $\mathbf{I}^2 = \mathbf{Q}^2 + \mathbf{U}^2 + \mathbf{V}^2$
- $I^2 > Q^2 + U^2 + V^2$
- $\mathbf{Q} = \mathbf{U} = \mathbf{V} = \mathbf{0}$

Astrophysical Polarization

- Processes which generate polarized radiation:

- Synchrotron emission: Up to ~80% linearly polarized, with no circular polarization. Measurement provides information on strength and orientation of magnetic fields, level of turbulence.
- Dust Emission: Spinning aspherical dust grains in molecular clouds are aligned and this provides information about the direction of the plane of sky component of the magnetic field.
- Zeeman line splitting: Presence of B-field splits RCP and LCP components of spectral lines by 2.8 Hz/µG. Measurement provides direct measure of B-field.

Processes which modify polarization state:

- Faraday rotation: Magnetoionic region rotates plane of linear polarization. Measurement of rotation gives B-field estimate.
- Faraday conversion: Particles in magnetic fields can cause the polarization ellipticity to change, turning a fraction of the linear polarization into circular.

Example: Zeeman effect

SiO maser polarization

SiO maser polarization

SiO maser polarization

Assaf 2013

Water maser polarization

Vlemmings 2005

B field ~ few hundreds mG

Linear polarization rare and weak (< 2 %) Circular polarization 0.3 to 20%

Magnetic field around red super giant VX Sgr

Best fitted dipole magnetic field for the H₂O maser around VX Sgr

Consistent with large-scale dipole magnetic field determined from H_2O

OH maser polarization

NML Cyg 1612 MHz OH Maser (MERLIN obs.)

Etoka & Diamond 2004

Magnetic field strength from masers

Summary with a historical plot First VLBI spectrum

1665 MHz OH emission of W3 obtained from Haystack and Greenbank (June 8 - 10, 1967) by J. M. Moran